4.6 Article

Modeling the seismic response of individual hydraulic fracturing stages observed in a time-lapse distributed acoustic sensing vertical seismic profiling survey

期刊

GEOPHYSICS
卷 85, 期 4, 页码 T225-T235

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2019-0819.1

关键词

-

资金

  1. Reservoir Characterization Project at the Colorado School of Mines

向作者/读者索取更多资源

In 2017, distributed acoustic sensing (DAS) technology was deployed in a horizontal well to conduct a vertical seismic profiling survey before and after each of 78 hydraulic fracturing stages. From two vibroseis source locations at the surface, time shifts of P- and S-waves were observed but decayed over days. Some stages also showed waves scattered off the stimulated rock volume. We have used 2D finite difference elastic wavefield modeling to understand these observations and connect them to underlying properties of the stimulated rock. We have developed an effective medium model of vertical fractures that close exponentially with time as fluid leaks off into the formation canmatch the distribution of P- and S-wave time shifts along the well. This has enabled estimates of the height, normal and tangential fracture compliance values, and decay time of the stimulated rock volume. Additionally, the kinematics of scattered waves observed in the data have been found to be consistent with PS conversion across the stimulated rock volume from an individual stage. With higher quality DAS data, stage-by-stage inversion for height, fracture compliance, and decay time attributes may be possible for characterizing variations in the effectiveness of hydraulic fracturing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据