4.7 Article

Stacked sills forming a deep melt-mush feeder conduit beneath Axial Seamount

期刊

GEOLOGY
卷 48, 期 7, 页码 693-697

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G47223.1

关键词

-

类别

资金

  1. National Science Foundation [OCE0002488, 0002551, 0002600, 1357076, 1658018, 1658199]
  2. Columbia University
  3. Directorate For Geosciences
  4. Division Of Ocean Sciences [1658018, 0002600] Funding Source: National Science Foundation
  5. Division Of Ocean Sciences
  6. Directorate For Geosciences [1658199, 1357076, 0002551] Funding Source: National Science Foundation

向作者/读者索取更多资源

Magmatic systems are composed of melt accumulations and crystal mush that evolve with melt transport, contributing to igneous processes, volcano dynamics, and eruption triggering. Geophysical studies of active volcanoes have revealed details of shallow-level melt reservoirs, but little is known about fine-scale melt distribution at deeper levels dominated by crystal mush. Here, we present new seismic reflection images from Axial Seamount, northeastern Pacific Ocean, revealing a 3-5-km-wide conduit of vertically stacked melt lenses, with near-regular spacing of 300-450 m extending into the inferred mush zone of the mid-to-lower crust. This column of lenses underlies the shallowest melt-rich portion of the upper-crustal magma reservoir, where three dike intrusion and eruption events initiated. The pipe-like zone is similar in geometry and depth extent to the volcano inflation source modeled from geodetic records, and we infer that melt ascent by porous flow focused within the melt lens conduit led to the inflation-triggered eruptions. The multiple near-horizontal lenses are interpreted as melt-rich layers formed via mush compaction, an interpretation supported by one-dimensional numerical models of porous flow in a viscoelastic matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据