4.7 Article

Verifying the wall-flow-guided assumption of the lateral swirl combustion system in DI diesel engines

期刊

FUEL
卷 266, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.117079

关键词

DI diesel engine; Lateral swirl combustion system; Spray wall impingement; Combustion performance; Simulation; Visualization

向作者/读者索取更多资源

A lateral swirl combustion system (LSCS) was designed to promote the spatial spray distribution through the spray wall impingement, and previous studies have established its combustion performance improvement in direct injection (DI) diesel engines. To verify that the improvement in combustion performance is due to the optimal wall-flow-guidance under the assumptive spray impingement position, numerical and experimental tests were conducted under different circumferential injection angles (CIA). The fuel/air mixing and combustion characteristics were computed and analyzed. The endoscopic visualization technique was applied to a single-cylinder diesel engine to record the spray and combustion processes. Based on the two-color method, flame temperature distribution, soot concentration distribution and the corresponding combustion performance were analyzed. Then the variation tendency of combustion performance was further validated under different engine speeds. The numerical and simulation results consistently show that the LSCS chamber and spray jet achieve an optimal match when the spray impingement position is precisely on the convex edge (CIA = 0 degrees). M this position, the LSCS exerts the lowest fuel consumption and soot emission under various engine speeds, because significant lateral swirls form and evenly distribute fuel across all split arcs, promoting the in-cylinder fuel/air mixing and combustion. Therefore, the wall-flow-guided assumption of the LSCS in DI diesel engines is successfully verified in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据