4.7 Article

PLCE1 regulates the migration, proliferation, and differentiation of podocytes

期刊

EXPERIMENTAL AND MOLECULAR MEDICINE
卷 52, 期 4, 页码 594-603

出版社

SPRINGERNATURE
DOI: 10.1038/s12276-020-0410-4

关键词

-

资金

  1. Research Program of the National Research Foundation of Korea (NRF) - Korean government [MSIT 2018R1A5A2025079]

向作者/读者索取更多资源

PLCE1 encodes phospholipase C epsilon, and its mutations cause recessive nephrotic syndrome. However, the mechanisms by which PLCE1 mutations result in defects associated with glomerular function are not clear. To address this, we investigated the function of PLCE1 in podocytes called glomerular epithelial cells, where the pathogenesis of nephrotic syndrome converges. PLCE1 colocalized with Rho GTPases in glomeruli. Further, it interacted with Rho GTPases through the pleckstrin homology domain and Ras GTP-binding domains 1/2. Knockdown or knockout of PLCE1 in podocytes resulted in decreased levels of GTP-bound Rac1 and Cdc42, but not those of RhoA, and caused a reduction in cell migration. PLCE1 interacted with NCK2 but not with NCK1. Similar to the PLCE1 knockout, NCK2 knockout resulted in decreased podocyte migration. Knockout of PLCE1 reduced the EGF-induced activation of ERK and cell proliferation in podocytes, whereas knockout of NCK2 did not affect proliferation. Further, the knockout of PLCE1 also resulted in decreased expression of podocyte markers, including NEPH1, NPHS1, WT1, and SYNPO, upon differentiation, but the knockout of NCK2 did not affect the expression of these markers. Therefore, our findings demonstrate that PLCE1 regulates Rho GTPase activity and cell migration through interacting with NCK2 and that PLCE1 also plays a role in the proliferation and differentiation of podocytes, regardless of the presence of NCK2. Kidney disease: The flaw behind a faulty filter A genetic mutation associated with kidney disease impairs the maturation and migration of cells that filter waste products out of the blood. Tiny tendrils from kidney cells called podocytes establish a tight meshwork that keeps blood proteins in circulation while allowing unwanted contaminants to pass through. Mutations in the PLCE1 gene disrupt this filter, leading to a disorder called nephrotic syndrome Researchers led by Heon Yung Gee at Yonsei University College of Medicine, Seoul, South Korea, have uncovered mechanisms underlying this malfunction. Working with cultured podocytes, they showed that loss of PLCE1 impairs cell migration, potentially undermining their ability to form a meshwork. The researchers also found that the protein encoded by PLCE1 interacts with other molecules that promote cell division and maturation, revealing another mechanism by which mutations could contribute to loss of podocyte function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据