4.6 Article

SARS-CoV-2, an evolutionary perspective of interaction with human ACE2 reveals undiscovered amino acids necessary for complex stability

期刊

EVOLUTIONARY APPLICATIONS
卷 13, 期 9, 页码 2168-2178

出版社

WILEY
DOI: 10.1111/eva.12980

关键词

ACE2; coronavirus; molecular dynamics; positive selection; purifying selection; SARS-CoV-2; spike protein

资金

  1. Universidad de Las Americas-Quito [BIO.VAJ.18.03, JY.19.04]

向作者/读者索取更多资源

The emergence of SARS-CoV-2 has resulted in nearly 1,280,000 infections and 73,000 deaths globally so far. This novel virus acquired the ability to infect human cells using the SARS-CoV cell receptor hACE2. Because of this, it is essential to improve our understanding of the evolutionary dynamics surrounding the SARS-CoV-2 hACE2 interaction. One way theory predicts selection pressures should shape viral evolution is to enhance binding with host cells. We first assessed evolutionary dynamics in select betacoronavirus spike protein genes to predict whether these genomic regions are under directional or purifying selection between divergent viral lineages, at various scales of relatedness. With this analysis, we determine a region inside the receptor-binding domain with putative sites under positive selection interspersed among highly conserved sites, which are implicated in structural stability of the viral spike protein and its union with human receptor ACE2. Next, to gain further insights into factors associated with recognition of the human host receptor, we performed modeling studies of five different betacoronaviruses and their potential binding to hACE2. Modeling results indicate that interfering with the salt bridges at hot spot 353 could be an effective strategy for inhibiting binding, and hence for the prevention of SARS-CoV-2 infections. We also propose that a glycine residue at the receptor-binding domain of the spike glycoprotein can have a critical role in permitting bat SARS-related coronaviruses to infect human cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据