4.5 Article

Genomic regions underlying metabolic and neuronal signaling pathways are temporally consistent in a moving avian hybrid zone

期刊

EVOLUTION
卷 74, 期 7, 页码 1498-1513

出版社

OXFORD UNIV PRESS
DOI: 10.1111/evo.13970

关键词

Chickadee; hybrid index; glutamate; synaptic transmission; tension zone

资金

  1. Fuller Evolutionary Biology Program at the Cornell Lab of Ornithology, Villanova University
  2. University of Colorado Boulder

向作者/读者索取更多资源

The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent-including glutamate signaling, synaptic transmission, and catabolic processes-but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据