4.7 Article

The performance of micro-meso-pore HY zeolite for supporting Mo toward oxidation of dibenzothiophene

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 27, 期 24, 页码 30600-30614

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-09266-2

关键词

Oxidative desulfurization; HY zeolite; Dibenzothiophene; Catalysis

向作者/读者索取更多资源

A uniformly distribution of 3 wt.% Mo (with tetrahedral coordination) on a commercial HY zeolite having both micro- and meso-pores, provided a new active catalyst which resulted 100% removal of DBT in this work. Respectively, H(2)O(2)and acetonitrile were used as the oxidant and extraction solvent for oxidative desulfurization (ODS) at a mild condition. The structure of three-dimensional meso-pores, despite major micro-pores, was proved to be intriguing for the use of acidic HY zeolite as a support material in this process. The catalyst samples were characterized by different analyses of XRPD, XRF, FTIR, SEM, EDX, TEM, N(2)adsorption desorption, BET, BJH, UV-vis, and NH3-TPD. High amounts of Mo were not in favor of the catalytic performance because of increasing non-framework polymolybdate formation, which led to decreasing meso-pore volume. Acid sites strength also decreased by increasing Mo content. The Mo active sites at a low loading of 3 wt.% reached the best performance for the complete removal of DBT (t= 90 min,T= 60 degrees C, catalyst/fuel = 8 g/L, O/S = 2,V-Solvent/V-Oil= 1/2, DBT = 1000 ppm), mainly due to the presence of isolated Mo species in the framework of HY. The efficiency still reached to 90% after recycling the catalyst three times. The reusability of catalyst revealed the adsorption of the aqueous phase by this hydrophilic catalyst during the process being as a major deactivation factor. This was significantly diminished via a subsequent washing by acetonitrile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据