4.7 Article

Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 27, 期 16, 页码 19650-19660

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-08441-9

关键词

Algae; Bioremediation; Growth kinetics; Nano-pollution; Lipid synthesis

资金

  1. University Grants Commission (UGC), New Delhi, India [F.25-a/2013-14(BSR)/7-125/2007(BSR), F.25-a/2014-15(BSR)/7-125/2007(BSR)]

向作者/读者索取更多资源

Uses of iron oxide nanoparticles have increased in the last decade. The increased application marked a concern regarding their fate and behavior in the environment. Especially towards the aquatic ecosystems, as the ultimate descend of these iron oxide nanoparticles are aquatic bodies. The greater surface area per mass compared with larger-sized materials of the same chemistry renders these nanoparticles biologically more active. Therefore, it is imperative to assess their eco-toxicogical impact on aquatic eco-systems. In the present study, comparative assessment of iron oxide nanoparticles and their bulk counterpart have been monitored using Coelastrella terrestris up to 40 days. Interestingly, study reveals the potential of Coelastrella terrestris as tool for the bioremediation of iron nanoparticles to combat nano-pollution. Adsorption/absorption kinetics measured after 25 days of treatments with iron oxide nanoparticle and its bulk counterpart revealed higher absorption levels in comparison to the adsorption with maximum accumulation factor (AF) of 2.984 at 50 mg L-1 in nano-form. Iron oxide absorption was found linearly related with concentration in both cases (y = 11.313x-12.165, R-2 = 0.8691 in nano; y = 6.35x-5.74, R-2 = 0.8128 in bulk). However, 50-mg L-1 nanoparticle concentration was perceived sub-lethal for the algae with 33.33% algal growth reduction under nano and 27.77% under bulk counterpart. Other biochemical parameters, i.e., SOD, CAT, MDA, and lipid quantification, were also quantified to correlate the state of metabolism of treated algal cells in comparison to the control and these exhibited reduction in algal growth due to oxidative stress. Morphological changes were monitored through SEM and TEM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据