4.7 Article

nirS-type denitrifying bacterial communities in relation to soil physicochemical conditions and soil depths of two montane riparian meadows in North China

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 27, 期 23, 页码 28899-28911

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-09171-8

关键词

Soil properties; Denitrifying bacterial community; Illumina MiSeq 2500 sequencing; Montane meadows; Soil depth

资金

  1. Shanxi Key Technology Research & Development Program of China [2018LYCX32]
  2. Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research [201805D111010]
  3. Science and Technology Innovation Fund of Shanxi Agricultural University [20132-14]

向作者/读者索取更多资源

Mountain riparian zones are excellent buffers for protecting aquatic ecosystems from nutrient runoff in nitrogen deposition processes due to fertilization and manure. Denitrification is a critical process for transferring soil N to the atmosphere. Denitrifying bacterial communities in soil are indicative of the soil quality of a functional ecosystem. We investigated the effects of physicochemical properties of soil on the diversity and activity of denitrifiers in the top-soil and sub-soil of two typical montane riparian meadows: a multi-colored and a flood-plain meadow. Illumina MiSeq 2500 sequencing of nirS showed that the multi-colored meadow had greater diversity and abundance of nirS-type denitrifiers than the flood-plain meadow and that the total N content, ammonium content, and denitrification enzyme activity (DEA) in soil differed significantly between the two types of meadows. The abundances of dominant denitrifiers at phylum and genus levels showed different responses to the two soil layers of the two meadow types. In top-soils, the highest abundance of Firmicutes was recorded in the multi-colored meadow, while in the flood-plain meadow, there was the highest abundance of Proteobacteria. The Actinobacteria abundance was the highest in top-soil and sub-soil of the flood-plain meadow. The abundance of Chloroflexi was the highest in top-soil of the flood-plain meadow and in sub-soil of the multi-colored meadow. The diversity of denitrifying bacteria was strongly influenced by variations of soil properties down the soil profile. Spearman's rank correlation analyses showed that the diversity and community composition of denitrifying bacteria were strongly associated with most of the soil properties. Therefore, physicochemical soil properties, and particularly the organic carbon, nitrate, and ammonium contents, influence the diversity and abundance of denitrifiers in soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据