4.7 Article

Adsorption-desorption and co-migration of vanadium on colloidal kaolinite

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 27, 期 15, 页码 17910-17922

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-07845-x

关键词

Colloid; Vanadium; Adsorption; Desorption; Porous media; Migration

资金

  1. Fundamental Research Funds for the Central Universities (CN) [2019FZJD007] Funding Source: Medline
  2. Key Technologies Research and Development Program [2018YFC1802201] Funding Source: Medline
  3. Sichuan Science and Technology Program [2018HH0137] Funding Source: Medline

向作者/读者索取更多资源

Vanadium (V) pollution in soil has been widely noted, while knowledge about the effect of soil colloid on migration of V is scarce. Batch adsorption-desorption and transportation of the colloid-adsorbed V in columns packed with quartz sand under various environment conditions were carried out to explore the retention and transportation of V by colloidal kaolinite. Batch adsorption-desorption studies show that the adsorption of V by the colloidal kaolinite was mainly specific adsorption and redox played a limited role in the adsorption process. The maximum adsorption capacity of the colloidal kaolinite was 712.4 mg g(-1), and about 5.9-8.7% of the adsorbed V could be desorbed. Both the adsorption-desorption and migration of V with colloidal kaolinite were highly ambient condition dependent. The column studies show that V was highly mobile in the saturated porous media. An easier transfer of V with an increase in pH, IS, and velocity of flow was noted. However, the increase of IS lead to the blockage of the colloidal kaolinite transportation. The recovery rate of the colloidal kaolinite at pH 7 and 9 was 2.0 and 2.1 times that at pH 5, respectively. The migration of colloidal-adsorbed V in sand column preceded that of V ion, but more colloidal-bound V than V ion remained in the column. Lack of consideration of the combination and co-transportation of V and colloidal kaolinite will lead to an overestimation of the risk of V to deeper soil profiles and groundwater. Graphical abstract

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据