4.8 Article

Dually Charged MOF-Based Thin-Film Nanocomposite Nanofiltration Membrane for Enhanced Removal of Charged Pharmaceutically Active Compounds

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 12, 页码 7619-7628

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c00832

关键词

-

资金

  1. National Natural Science Foundation of China [51838009, 51925806]
  2. Peak Discipline Construction Program in Environment and Ecology of Shanghai

向作者/读者索取更多资源

Removal of pharmaceutically active compounds (PhACs) is of great importance in wastewater reclamation due to their potent negative impacts on human health. Typical polyamide nanofiltration (NF) membranes are negatively charged, which compromises their rejection rate of positively charged PhACs. Herein, we propose to rationally design a novel thin-film nanocomposite (TFN) NF membrane featuring a dually charged metal organic framework (MOF) to effectively remove both positively and negatively charged PhACs. Ethylenediamine (ED) was grafted to the coordinately unsaturated metal sites inside the MIL-101(Cr). The resulting ED-MIL-101(Cr) contained both strong positively charged amine groups inside its channels and negatively charged carboxyl groups at its surface. This dually charged nature of the MOF nanoparticles enabled the ED-MIL-101(Cr)-containing TFN membrane to achieve high rejection rates ( mostly >90%) for both positively (terbutaline, atenolol, fluoxetine) and negatively charged PhACs (ketoprofen, diclofenac, bezafibrate). At the same time, the ED-MIL-101(Cr) TFN membrane had greatly improved water permeance (140% over the control membrane with MOF loading). Calculations based on density functional theory further confirmed the large energy barrier for the migration of both negatively and positively charged PhACs across the nanochannels of ED-MIL-101(Cr). This study highlights a promising potential of dually charged MOF-TFN membranes for efficient removal of trace organic contaminants in wastewater reclamation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据