4.8 Article

Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 11, 页码 6878-6887

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b05883

关键词

-

资金

  1. Ford Motor Co
  2. Environmental Science and Policy Program at MSU

向作者/读者索取更多资源

Energy storage can reduce peak power consumption from the electricity grid and therefore the cost for fast-charging electric vehicles (EVs). It can also enable EV charging in areas where grid limitations would otherwise preclude it. To address both the need for a fast-charging infrastructure as well as management of end-of-life EV batteries, second-life battery (SLB)-based energy storage is proposed for EV fast-charging systems. The electricity grid-based fast-charging configuration was compared to lithium-ion SLB-based configurations in terms of economic cost and life cycle environmental impact in five U.S. cities. Compared to using new batteries, SLB reduced the levelized cost of electricity (LCOE) by 12-41% and the global warming potential (GWP) by 7-77%. Photovoltaics along with SLB reduced the use of grid electricity and provided higher GWP and cumulative energy demand (CED) reduction compared to only using SLB. The LCOE of the SLB-based configurations was sensitive to SLB cost, lifetime, efficiency, and discount rate, whereas the GWP and CED were affected by SLB lifetime, efficiency, and the required enclosure materials. Solar insolation and electricity pricing structures were key in determining the configuration, which was economically and environmentally suitable for a location.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据