4.8 Article

Cobalt/Peracetic Acid: Advanced Oxidation of Aromatic Organic Compounds by Acetylperoxyl Radicals

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 8, 页码 5268-5278

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c00356

关键词

-

资金

  1. National Science Foundation [CHE-1609361]

向作者/读者索取更多资源

Peracetic acid (PAA) is increasingly used as an alternative disinfectant and its advanced oxidation processes (AOPs) could be useful for pollutant degradation. Co(II) or Co(III) can activate PAA to produce acetyloxyl (CH3C(O)O-center dot) and acetylperoxyl (CH3C(O)O-center dot) radicals with little (OH)-O-center dot radical formation, and Co(II)/Co(III) is cycled. For the first time, this study determined the reaction rates of PAA with Co(II) (k(PAA, Co(II)) = 1.70 x 10(1) to 6.67 x 10(2) M-1.s(-1)) and Co(III) (k(PAA, Co(III)) = 3.91 x 10(0) to 4.57 x 10(2) M-1.s(-1)) ions over the initial pH 3.0-8.2 and evaluated 30 different aromatic organic compounds for degradation by Co/PAA. In-depth investigation confirmed that CH3C(O)O-center dot is the key reactive species under Co/PAA for compound degradation. Assessing the structure-activity relationship between compounds' molecular descriptors and pseudo-first-order degradation rate constants (k(PAA)'. in s(-1)) by Co/PAA showed the number of ring atoms, E-HOMO, softness, and ionization potential to be the most influential, strongly suggesting the electron transfer mechanism from aromatic compounds to the acetylperoxyl radical. The radical production and compound degradation in Co/PAA are most efficient in the intermediate pH range and can be influenced by water matrix constituents of bicarbonate, phosphate, and humic acids. These results significantly improve the knowledge regarding the acetylperoxyl radical from PAA and will be useful for further development and applications of PAA-based AOPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据