4.7 Article

Distribution, abundance, and diversity of microplastics in the upper St. Lawrence River

期刊

ENVIRONMENTAL POLLUTION
卷 260, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.113994

关键词

Microplastics; Sediments; Surface water; RDA; Spatial distribution; Aquatic ecosystems

资金

  1. McGill Trottier Institute of Public Policy
  2. Groupe de recherche interuniversitaire en limnologie (GRIL)
  3. Canadian Wildlife Federation
  4. Natural Sciences and Engineering Research Council of Canada
  5. Canada Research Chair program

向作者/读者索取更多资源

Microplastics are pervasive pollutants in fresh waters, but their distribution, abundance, and diversity in fluvial environments remain poorly documented. Previous research indicated that large polyethylene microbeads were abundant in the freshwater sediments of the St. Lawrence River. Here we extend this work by quantifying the abundance of a broad range of sizes and types of microplastics in sediments and surface water samples, and we relate these metrics to environmental variables. We sampled 21 sites for sediments that spanned a land use gradient, and 10 surface water stations above and below wastewater effluent sites, along the fluvial corridor of the St. Lawrence River between Montreal and Quebec City from July to August 2017. Microplastics were removed from sediments using an oil extraction protocol and enumerated under fluorescent microscopy. We tested predictions that environmental filters and known point sources affect microplastic concentrations in the river. The mean concentration of microplastics across all sediment sampling sites was 832 (+/- 150 SE) plastics per kg dry weight (range 65-7562 plastics per kg dry weight), which is among the highest recorded (in the top 25%) for the world's freshwater and marine systems. Microplastic concentrations in the sediments were significantly related to a suite of environmental variables including land use and sediment particle characteristics. Particle characteristics, proximity to point sources (urban land use), and environmental filters (sediment compositional variables, % organic carbon, % inorganic carbon and distance from shore) each explained a significant fraction of variation in the microplastic composition in the sediment, with environmental filters having the greatest influence. We present a protocol that could be used to efficiently and accurately detect a broad range of microplastics until a standardized protocol is established for large-scale monitoring. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据