4.7 Review

Environmental temperature and human epigenetic modifications: A systematic review

期刊

ENVIRONMENTAL POLLUTION
卷 259, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113840

关键词

Epigenetics; Temperature; Climate change; Epidemiology; Systematic review

资金

  1. China Scholarship Council [201806010405]
  2. Monash Graduate Scholarship
  3. Monash International Postgraduate Research Scholarship
  4. Early Career Fellowship of the Australian National Health and Medical Research Council [APP1109193]
  5. Career Development Fellowship of the Australian National Health and Medical Research Council [APP1107107, APP1163693]

向作者/读者索取更多资源

The knowledge about the effects of environmental temperature on human epigenome is a potential key to understand the health impacts of temperature and to guide acclimation under climate change. We performed a systematic review on the epidemiological studies that have evaluated the association between environmental temperature and human epigenetic modifications. We identified seven original articles on this topic published between 2009 and 2019, including six cohort studies and one cross-sectional study. They focused on DNA methylation in elderly people (blood sample) or infants (placenta sample), with sample size ranging from 306 to 1798. These studies were conducted in relatively low temperature setting (median/mean temperature: 0.8-13 degrees C), and linear models were used to evaluate temperature-DNA methylation association over short period (<= 28 days). It has been reported that short-term ambient temperature could affect global human DNA methylation. A total of 15 candidate genes (ICAM-1, CRAT, F3, TLR-2, iNOS, ZKSCAN4, ZNF227, ZNF595, ZNF597, ZNF668, CACNA1H, AIRE, MYEOV2, NKX1-2 and CCDC15) with methylation status associated with ambient temperature have been identified. DNA methylation on ZKSCAN4, ICAM-1 partly mediated the effect of short-term cold temperature on high blood pressure and ICAM-1 protein (related to cardiovascular events), respectively. In summary, epidemiological evidence about the impacts of environment temperature on human epigenetics remains scarce and limited to short-term linear effect of cold temperature on DNA methylation in elderly people and infants. More studies are needed to broaden our understanding of temperature related epigenetic changes, especially under a changing climate. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据