4.7 Review

Functionally graded graphene reinforced composite structures: A review

期刊

ENGINEERING STRUCTURES
卷 210, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2020.110339

关键词

Functionally graded materials; Graphene platelets; Composite structures; Mechanical analysis; Micromechanics model

资金

  1. Australian Research Council [DP160101978]

向作者/读者索取更多资源

Owing to their superior mechanical properties, e.g. exceptionally high Young's modulus, high strength, large specific surface area, and good thermal conductivity, graphene and its derivatives such as graphene platelets (GPLs) are excellent reinforcing nanofillers for composite materials. The most recently developed functionally graded graphene platelets reinforced composite (FG-GPLRC) where GPLs are non-uniformly dispersed with more GPLs in the area where they are most needed to achieve significantly improved mechanical performance has opened up a new avenue for the development of next generation structural forms with an excellent combination of high stiffness, light weight and multi-functionality. Research activities in this emerging area have been rapidly increasing since it was first proposed in 2017. The present paper (i) briefly reviews the mechanical properties of graphene and graphene composites; (ii) summarizes the characteristics of functionally graded materials (FGM) and reports the fabrication of FG-GPLRC; (iii) discusses the existing micromechanics models for the prediction of effective mechanical properties of GPLRC; (iv) presents a comprehensive review on the mechanical analyses of FG-GPLRC structures; and (v) discuss the key technical challenges and future research directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据