4.7 Article

High temperature heat pump integration into district heating network

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 210, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.112719

关键词

Sustainability; CO2; Environmental analysis; HTHP; Waste heat recovery

资金

  1. Spanish Government [RTC-2017-6511-3]
  2. Universitat Jaume I (Castello de la Plana, Spain) [UJI-B2018-24]
  3. [PREDOC/2017/41]
  4. [E-2019-28]
  5. [FJCI-2016-28324]

向作者/读者索取更多资源

This study illustrates the potential of high temperature heat pumps (HTHPs) integration into district heating network (DHN) through a twofold approach, using DHN as a heat sink and source. It is used as a heat sink of HTHP that uses waste heat from the supermarket's refrigeration system as a heat source whereas it is used as a heat source to HTHP that provides heat to industrial applications. When the DHN acts as the heat sink, the integrated system provides a coefficient of performance (COP) of the waste heat recovery (WHR) system between 3.2 and 5.4, reducing the operating costs between 50% and 100% with an average price ratio of 2.25 compared with the standard CO2 refrigeration system. If the DHN is the heat source, the integrated system provides a COP from 2.8 to 5.7 for a heat sink of 110 degrees C. The alternative low-GWP refrigerants assessment illustrates that HC-290, HFO-1234ze(E) and HFO-1234yf were considered the ideal candidates to replace the HFC-134a, whereas HCFO-1233zd(E) and HCFO-1224yd(Z) were the most promising low-GWP refrigerants to replace HFC-245fa. Finally, the environmental results showed that the utilisation of the DHN as the heat sink in the integrated system solution produces about 60% lower equivalent CO2 emissions than the DHN generation mix. Moreover, using DHN as the heat source, the equivalent CO2 emissions can be reduced up to 98% in Sweden compared to conventional natural gas boilers. Hence, the combination of HTHPs and the DHN represents a step forward in the mitigation of climate change through the utilisation of sustainable energy conversion technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据