4.7 Article

A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions

期刊

ENERGY
卷 197, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.117239

关键词

Solar radiation; Gradient boosting tree; Artificial neural network; Adaptive neuro fuzzy inference system; Classification and regression tree

向作者/读者索取更多资源

In this study, the potential of six different machine learning models, gradient boosting tree (GBT), multilayer perceptron neural network (MLPNN), two types of adaptive neuro-fuzzy inference systems (ANFIS) based on fuzzy c-means clustering (ANFIS-FCM) and subtractive clustering (ANFIS-SC), multi-variate adaptive regression spline (MARS), and classification and regression tree (CART) were used for forecasting solar radiation from two stations of two different locations, Turkey and USA. Wind speed, maximum air temperature, minimum air temperature and relative humidity were used as inputs to the developed models. For accurate evaluation of performance of models, four statistical indicators, root mean squared error (RMSE), coefficient of correlation (R), mean absolute error (MAE) and Nash-Sutcliffe efficiency coefficient (NS) were employed to evaluate accuracy of the developed models. Comparison of results showed that the GBT model performed better than the MLPNN, ANFIS, MARS, and CART in modeling solar radiation. The average RMSE of MLPNN, ANFIS-FCM, ANFIS-SC, MARS and CART models was decreased by 0.26%, 1.5%, 0.51%, 2.5%, and 19.34% using GBT model at Fairfield Station, 4%, 1.37%, 0.24%, 4.12%, and 24.4% at Monmouth Station, 11.99%, 48.7%, 41.6%, 8.23%, and 33.41% at Antalya Station, 11%, 54.8%, 51.9%, 19.65%, and 37.1% at Mersin Station, respectively. The overall results indicated that the GBT model could be successfully applied in forecasting solar radiation by using climatic parameters as inputs. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据