4.7 Article

Perspective of concentrating solar power

期刊

ENERGY
卷 198, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.117373

关键词

Concentrating solar power; Solar concentrator; Solar receiver; Thermal energy storage; S-CO2 Brayton cycle

资金

  1. Key Project of National Natural Science Foundation of China [51436007]
  2. National Key R&D Program of China [2018YFB1501001]
  3. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [51721004]

向作者/读者索取更多资源

In this perspective paper, the present status and development tendency of concentrating solar power (CSP) are analyzed from two aspects: (1) Potential pathways to efficient CSP through improving operation temperature to above 700 degrees C; (2) Technologies for efficient solar collection, thermal storage, and power generation at > 700 degrees C. Based on the analyses, barriers on the way to the high-temperature CSP are summarized. They are: (1) the lack of methodology for heliostat design and field layout optimization, (2) significant performance degradations of solar-thermal conversion, heat storage and transfer in receiver and thermal energy storage due to high temperature, (3) the lack of suitable supercritical CO2(S-CO2) Brayton cycle for CSP and mature design methods for S-CO2 components. To overcome these issues, perspectives on following three aspects are proposed. Firstly, optimization approaches for optimal heliostat size and layout, and game-changing techniques for heliostat structure design should be brain-stormed. Secondly, receivers and thermal storage devices designed through efficiency-improving approaches and fabricated by durable materials should be developed to maintain efficient and reliable operation. Thirdly, the developments of novel S-CO2 cycle and corresponding key components are eagerly desired to achieve efficient thermal-electric conversion. Perspectives from this paper would present possible approaches to efficient CSP. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据