4.7 Article

A driving pattern recognition-based energy management for plug-in hybrid electric bus to counter the noise of stochastic vehicle mass

期刊

ENERGY
卷 198, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.117289

关键词

Plug-in hybrid electric bus; Energy management; Driving pattern recognition; DFSS; Stochastic vehicle mass

资金

  1. Natural Science Foundation of Shandong Province, China [ZR2014EL023]

向作者/读者索取更多资源

Because the strong coupling relationship between energy management and required power, the Pontryagin's Minimum Principle (PMP)-based energy management should consider the noise of stochastic vehicle mass for plug-in hybrid electric bus (PHEB). However, if the vehicle mass is evaluated on-line, the control complexity will be greatly increased. This paper proposes a driving pattern recognition method to address the problem. The method is constituted by a look-up table and the K-nearest neighbor algorithm (KNN). The look-up table is used to recognize the robust design value (the inverse value of the robust co-state), where the average velocity at every bus station is taken as input, and the robust design value is taken as output. More importantly, the robust design value is found off-line by Design For Six Sigma (DFSS) method, and can counter the noise of stochastic vehicle mass. Because of this, the noise of the stochastic vehicle mass can be neglected in adaptive energy management control. The Monte Carlo Simulation (MCS) and simulation test results show that the proposed method is reasonable, robust and applicable; the fuel economy can be averagely improved by 34.36%, compared to a rule-based energy management. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据