4.5 Article

Trusted Simulation Using Proteus Model for a PV System: Test Case of an Improved HC MPPT Algorithm

期刊

ENERGIES
卷 13, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/en13081943

关键词

Proteus; MPPT algorithm; PV Simulator; Drift problem

向作者/读者索取更多资源

The real implementation of the maximum power point tracking (MPPT) controllers for the photovoltaic (PV) systems is still a big challenge for researchers working in this field. Often, they use simulation tools to assess the performance of their MPPT algorithms before actual implementation. In this context, this paper aims to propose a trusted simulation of a PV system designed under Proteus software. The proposed PV simulator can be used to verify and evaluate the performance of MPPT algorithms with a closer approximation to the real implementation. The main advantage of this model that it contains a real microcontroller, as can be found in reality, so that same code for the MPPT algorithm used in the simulation will be used in real implementation. In contrast, when using (Powersim Software) PSIM or Matlab/Simulink, the code of the algorithm must be rewritten once the real experiment begins, because these tools don't provide a microcontroller or an electronic board in which our algorithm can be implemented and tested in the same way as the real experiment. After this section, a modified Hill-Climbing (HC) algorithm is introduced. The proposed algorithm can avoid the drift problem posed by conventional HC under a fast variation in insolation. The simulation results show that this method presents good performance in terms of efficiency (99.21%) and response time (10 ms), which improved by 1.2% and 70 ms respectively compared to the conventional HC algorithm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据