4.7 Review

Secular change and the onset of plate tectonics on Earth

期刊

EARTH-SCIENCE REVIEWS
卷 207, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.earscirev.2020.103172

关键词

Archean; Subduction; Plate tectonics; Geodynamics; Metamorphism

向作者/读者索取更多资源

The Earth as a planetary system has experienced significant change since its formation c. 4.54 Gyr ago. Some of these changes have been gradual, such as secular cooling of the mantle, and some have been abrupt, such as the rapid increase in free oxygen in the atmosphere at the Archean-Proterozoic transition. Many of these changes have directly affected tectonic processes on Earth and are manifest by temporal trends within the sedimentary, igneous, and metamorphic rock record. Indeed, the timing of global onset of mobile-lid (subduction-driven) plate tectonics on our planet remains one of the fundamental points of debate within the geosciences today, and constraining the age and cause of this transition has profound implications for understanding our own planet's long-term evolution, and that for other rocky bodies in our solar system. Interpretations based on various sources of evidence have led different authors to propose a very wide range of ages for the onset of subduction-driven tectonics, which span almost all of Earth history from the Hadean to the Neoproterozoic, with this uncertainty stemming from the varying reliability of different proxies. Here, we review evidence for paleo-subduction preserved within the geological record, with a focus on metamorphic rocks and the geodynamic information that can be derived from them. First, we describe the different types of tectonic/geodynamic regimes that may occur on Earth or any other silicate body, and then review different models for the thermal evolution of the Earth and the geodynamic conditions necessary for plate tectonics to stabilize on a rocky planet. The community's current understanding of the petrology and structure of Archean and Proterozoic oceanic and continental crust is then discussed in comparison with modern-day equivalents, including how and why they differ. We then summarize evidence for the operation of subduction through time, including petrological (metamorphic), tectonic, and geochemical/isotopic data, and the results of petrological and geodynamical modeling. The styles of metamorphism in the Archean are then examined and we discuss how the secular distribution of metamorphic rock types can inform the type of geodynamic regime that operated at any point in time. In conclusion, we argue that most independent observations from the geological record and results of lithospheric-scale geodynamic modeling support a global-scale initiation of plate tectonics no later than c. 3 Ga, just preceding the Archean-Proterozoic transition. Evidence for subduction in Early Archean terranes is likely accounted for by localized occurrences of plume-induced subduction initiation, although these did not develop into a stable, globally connected network of plate boundaries until later in Earth history. Finally, we provide a discussion of major unresolved questions related to this review's theme and provide suggested directions for future research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据