4.7 Article

Evaluating a primary carbonate pathway for manganese enrichments in reducing environments

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 538, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2020.116201

关键词

manganese; carbonates; carbon isotopes; ferruginous lake; redox-stratified

资金

  1. National Science Foundation (NSF) [EAR-1660691, EAR-1660761, EAR-1660873, NSF-1338322]
  2. Iowa Space Grant Consortium under NASA [NNX16AL88H]

向作者/读者索取更多资源

Most manganese (Mn) enrichments in the sedimentary rock record are hosted in carbonate minerals, which are assumed to have formed by diagenetic reduction of precursor Mn-oxides, and are considered diagnostic of strongly oxidizing conditions. Here we explore an alternative model where Mn-carbonates form in redox-stratified water columns linked to calcium carbonate dissolution. In ferruginous Brownie Lake in Minnesota, USA, we document Mn-carbonates as an HCl-extractable phase present in sediment traps and in reducing portions of the water column. Mn-carbonate becomes supersaturated in the Brownie Lake chemocline where dissolved oxygen concentrations fall below 5 mu M, and Mn-oxide reduction increases the dissolved Mn concentration. Supersaturation is enhanced when calcite originating from surface waters dissolves in more acidic waters at the chemocline. In the same zone, sulfate reduction and microaerobic methane oxidation add dissolved inorganic carbon (DIC) with negative delta C-13. These observations demonstrate that sedimentary Mn enrichments may 1) develop from primary carbonate phases, and 2) can occur in environments with dissolved oxygen concentrations <5 mu M. Primary Mn-carbonates are likely to originate in environments with high concentrations of dissolved Mn (>200 mu M), and where Mn and Fe are partitioned by S cycling, photoferrotrophy, or microaerophilic Fe-oxidation. A shallow lysocline enhances Mn-carbonate production by providing additional DIC and nucleation sites for crystal growth. This carbonate model for Mn-enrichments is expected to be viable in both euxinic and ferruginous environments, and provides a more nuanced view of the relationships between Mn and carbon cycling, with applications throughout the rock record. Crown Copyright (C) 2020 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据