4.7 Article

Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2Signaling by NADPH Oxidase 4

期刊

DIABETES
卷 69, 期 7, 页码 1341-1354

出版社

AMER DIABETES ASSOC
DOI: 10.2337/db19-1130

关键词

-

资金

  1. Grantova Agentura Ceske Republiky [16-06700S, 20-00408S, 17-01813S]
  2. Czech government [RVO:679885623]

向作者/读者索取更多资源

NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of beta-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, beta-cell-specific knockout mice (NOX4 beta KO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H(2)O(2)rescued GSIS in PIs from NOX4 beta KO mice. NOX4 silencing suppressed Ca(2+)oscillations, and the patch-clamped K(ATP)channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4 beta KO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause beta-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H(2)O(2)constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据