4.5 Article

Polyhedral Oligomeric Silsesquioxane/Platelets Rich Plasma/Gelrite-Based Hydrogel Scaffold for Bone Tissue Engineering

期刊

CURRENT PHARMACEUTICAL DESIGN
卷 26, 期 26, 页码 3147-3160

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1381612826666200311124732

关键词

Polyhedral oligomeric silsesquioxane; platelets rich plasma; hydroxyapatite; gelrite; scaffold; hydrogel; bone tissue engineering; drug delivery

资金

  1. Isfahan University of Medical Sciences [397764]

向作者/读者索取更多资源

Background: Polyhedral oligomeric silsesquioxane (POSS) is a monomer with silicon structure and an internal nanometric cage. Objective: The purpose of this study was to provide an injectable hydrogel that could be easily located in open or closed bone fractures and injuries, and also to reduce the possible risks of infections caused by bone graft either as an allograft or an autograft. Methods: Various formulations of temperature sensitive hydrogels containing hydroxyapatite, Gelrite, FOSS and platelets rich plasma (PRP), such as the co-gelling agent and cell growth enhancer, were prepared. The hydrogels were characterized for their injectability, gelation time, phase transition temperature and viscosity. Other physical properties of the optimized formulation including compressive stress, compressive strain and Young's modulus as mechanical properties, as well as storage and loss modulus, swelling ratio, biodegradation behavior and cell toxicity as rheometrical parameters were studied on human osteoblast MG-63 cells. Alizarin red tests were conducted to study the qualitative and quantitative osteogenic capability of the designed scaffold, and the cell adhesion to the scaffold was visualized by scanning electron microscopy. Results: The results demonstrated that the hydrogel scaffold mechanical force and injectability were 3.34 +/- 0.44 Mpa and 12.57 N, revectively. Moreover, the scaffold showed higher calcium granules production in alizarin red staining compared to the control group. The proliferation of the cells in G(4.5)H(1)P(0.03)PRP(10) formulation was significantly higher than in other formulations (p<0.05). Conclusion: The optimized Gelritellydroxyapatite/POSS/PRP hydrogel scaffold has useful impacts on osteoblasts activity, and may be beneficial for local drug delivery in complications including a break or bone loss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据