4.7 Article

Influence of 3d Transition Metal Impurities on Garnet Scintillator Afterglow

期刊

CRYSTAL GROWTH & DESIGN
卷 20, 期 5, 页码 3007-3017

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.9b01660

关键词

-

向作者/读者索取更多资源

Garnet scintillators often suffer from undesired afterglow, the origin of which is not always well-understood. A possible origin is contamination with transition metal (TM) ions. These impurities can act as traps giving rise to afterglow. Alternatively, they may show long-lived (microsecond) d-d emission. Here we present a systematic study on the role of 3d TM impurities in (Lu,Gd)(3)(Ga,Al)(5)O-12 garnet scintillators. Scintillator disks intentionally doped with ppm levels of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, or Zn were studied to identify TM-related traps in thermoluminescence (TSL) glow curves and their role in afterglow. For Ti, V, and Cr additional TSL peaks were observed that gave rise to RT afterglow in the 10(-2)-10(3) s time range, depending on garnet composition. On the millisecond time scale long-lived red/near-infrared emission was observed from Mn and Fe impurities, explained by spin-forbidden d-d emission. We show that afterglow can be reduced by the use of ultrapure raw materials. Other solutions include bandgap engineering for the garnet host to modify trap depths and applying optical filters to block the spin-forbidden d-d emission. The present study provides an insightful overview of the role of 3d TM impurities on afterglow in Ce-doped scintillators and procedures to predict and reduce afterglow. These insights will aid the development of Ce-doped garnets with superior afterglow behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据