4.8 Review

Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates

期刊

COORDINATION CHEMISTRY REVIEWS
卷 408, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ccr.2019.213173

关键词

Metal-organic frameworks; Chemical fixation of CO2; Cyclic carbonate; Energy conversion; Heterogeneous catalysis

资金

  1. DST
  2. MNRE, New Delhi, India

向作者/读者索取更多资源

Presently, we find a rapid pace of CO2 emission into the atmosphere causing major problems facing our planet. If no action is taken, it would have harmful consequences to humanity and the biosphere. More CO2 in the atmosphere will cause global warming. This will lead to climate upheavals disturbing the ecosystems, modification of the conditions and cycles of plant reproduction and numerous associated problems. Therefore, present CO2 content in the atmosphere should be drastically reduced to a much lower level on an urgent basis. Alternatively, CO2 represents an abundant Cl feedstock and its chemical utilization has caught the imagination of chemists in recent years. Thus, fixation of CO2 with epoxide to form cyclic carbonate (hereafter, CC) via cycloaddition reaction is significantly important and vigorously pursued in different laboratories around the world. This is because removal of CO2 takes place from the atmosphere and simultaneously it can be converted into value-added products. Metal organic frameworks (MOFs) have attracted enormous attention in recent years as potential systems for gas storage, separation, heterogeneous catalysis and so on, owing to their unique features such as designable architecture, controllable pore size, high surface area, permanent porosity, etc. In the present review, we discuss the recent progress made on catalytic conversion of CO2 to CCs by specially designed MOFs. It should be emphasized here that in the present review the literature survey is not exhaustive and we apologize for missing any important result in this review. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据