4.7 Article

Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching

期刊

CELL HOST & MICROBE
卷 19, 期 4, 页码 481-492

出版社

CELL PRESS
DOI: 10.1016/j.chom.2016.03.002

关键词

-

资金

  1. NIH [AI067380]

向作者/读者索取更多资源

The emergence of mosquito-borne RNA viruses, such as West Nile virus (WNV), is facilitated by genetically complex virus populations within hosts. Here, we determine whether WNV enzootic (Culex tarsalis, Cx. quinquefasciatus, and Cx. pipiens) and bridge vectors (Aedes aegypti) have differential impacts on viral mutational diversity and fitness. During systemic mosquito infection, WNV faced stochastic reductions in genetic diversity that rapidly was recovered during intra-tissue population expansions. Interestingly, this intrahost selection and diversification was mosquito species dependent with Cx. tarsalis and Cx. quinquefasciatus exhibiting greater WNV divergence. However, recovered viral populations contained a preponderance of potentially deleterious mutations (i.e., high mutational load) and had lower relative fitness in avian cells compared to input virus. These findings demonstrate that the adaptive potential associated with mosquito transmission varies depending on the mosquito species and carries a significant fitness cost in vertebrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据