4.7 Article

HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 255, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.cpc.2020.107262

关键词

Hypersonic aerothermodynamics; GPUs; High-order numerics

资金

  1. U.S. Air Force Office of Scientific Research (AFOSR) [1194592-1-TAAHO]
  2. Advanced Simulation and Computing (ASC) program of the U.S. Department of Energy's National Nuclear Security Administration (NNSA) via the PSAAP-II Center at Stanford [DE-NA0002373]

向作者/读者索取更多资源

In this study, the open-source Hypersonics Task-based Research (HTR) solver for hypersonic aerothermodynamics is described. The physical formulation of the code includes thermochemical effects induced by high temperatures (vibrational excitation and chemical dissociation). The HTR solver uses high-order TENO-based spatial discretization on structured grids and efficient time integrators for stiff systems, is highly scalable in GPU-based supercomputers as a result of its implementation in the Regent/Legion stack, and is designed for direct numerical simulations of canonical hypersonic flows at high Reynolds numbers. The performance of the HTR solver is tested with benchmark cases including inviscid vortex advection, low- and high-speed laminar boundary layers, inviscid one-dimensional compressible flows in shock tubes, supersonic turbulent channel flows, and hypersonic transitional boundary layers of both calorically perfect gases and dissociating air. Program summary Program Title: Hypersonics Task-based Research solver Program Files doi: http://dx.doi.org/10.17632/9zsxjtzfr7.1 Licensing provisions: BSD 2-clause Programming language: Regent Nature of problem: This code solves the Navier-Stokes equations at hypersonic Mach numbers including finite-rate chemistry for air dissociation along with multicomponent transport. The solver is designed for direct numerical simulations (DNS) of transitional and turbulent hypersonic turbulent flows at high enthalpies, and accounts for thermochemical effects such as vibrational excitation and chemical dissociation. Solution method: This code uses a low-dissipation sixth-order targeted essentially non-oscillatory (TENO) scheme for the spatial discretization of the conservation equations on Cartesian stretched grids. The time advancement is performed either with an explicit method, when the chemistry is slow and therefore does not introduce additional stiffness in the integration, or with an operator-splitting method that integrates the chemical production rates with an implicit discretization. Additional comments: The HTR solver builds on the runtime Legion [1] and is written in the programming language Regent [2] developed at Stanford University. Instructions for the installation of the components are provided in the README file enclosed with the HTR solver and in the Legion repository [1]. References: [1] Legion web page: https://legion.stanford.edu [1] Regent web page: http://regent-lang.org (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据