4.7 Article

Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation

期刊

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2019.105298

关键词

Darcy-Forchheimer slip flow; Entropy generation; Mixed convection; Activation energy; Curved stretching surface; Viscous dissipation

向作者/读者索取更多资源

Background: Mixed convection (forced+natural convection) is frequently observed in exceptionally high output devices where the forced convection isn't sufficient to dissipate all of the heat essential. At this point, consolidating natural convection with forced convection will frequently convey the ideal outcomes. Nuclear reactor technology and a few features of electronic cooling are the examples of these processes. Mixed convection problems are categorized by Richardson number (Ri), which is the ratio of Grashof number (for natural convection) and Reynolds number (for forced convection). For buoyancy or mixed convection the relative effect can be addressed by Richardson number. Typically, the natural convection is negligible when Richardson number is less than 0.1 (Ri < 0.1), forced convection is negligible when Richardson number is greater than 10 (Ri > 10) and neither is negligible when (0.1 < Ri < 10). It might be noticed that generally the forced convection is large comparative with natural convection except in case of remarkably low forced flow velocities. The current work gives significant insights regarding dissipative mixed convective Darcy-Forchheimer flow with entropy generation over a stretched curved surface. The energy equation is developed with respect to nonlinear radiation, dissipation and Ohmic heating Uoule heating). Binary reaction via activation energy is accounted. Method: Curvilinear transformations are utilized to change the nonlinear PDE's into ordinary ones. Computational outcomes are obtained via NDSolve MATHEMATICA. The results are computed and discussed graphically. Results: Velocity decays for Forchheimer number. Entropy generation enhances for diffusion parameter and chemical reaction parameter. Concentration profile reduces chemical reaction parameter and enhances for activation parameter. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据