4.7 Article

Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation

期刊

COMPOSITES PART B-ENGINEERING
卷 186, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2020.107817

关键词

-

资金

  1. Creative Research Initiative Program [2015R1A3A2028975]
  2. National Research Foundation of Korea (NRF)

向作者/读者索取更多资源

Auxetic cellular structures have garnered huge research interest as a candidate for energy absorption due to their appealing features, including extremely high indentation resistance and fracture resistance. However, auxetic foams reported so far typically can only sustain a very limited loading force and impact with a counter-intuitive behavior. Here, we report a highly efficient sound and shock absorber based on three-dimensional (3D) auxetic foam with two-dimensional (2D) wrinkled graphene oxide. Compared with pure polyurethane foam, the auxetic heterostructured polyurethane foam interconnected with 2D corrugated graphene oxide shows a sound absorbing capacity of 99.7% at a frequency of 2,236 Hz and a shock energy absorbing time of 189% during the impact loading. The synergistic effects between 3D auxetic foam and 2D wrinkled graphene oxide result in stable compressive cycling performance, more indentation resistance, and more energy dissipation during local impact loads. This 3D engineered auxetic porous structure with 2D crumpled graphene oxide provides a new and cost-effective strategy to effectively absorb acoustic and shock energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据