4.7 Article

3D compaction printing of a continuous carbon fiber reinforced thermoplastic

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2020.105985

关键词

Polymer-matrix composites (PMCs); Carbon fibers; Mechanical testing; 3D printing

向作者/读者索取更多资源

This study reports a three-dimensional compaction printing (3DCP) technique for a continuous carbon fiber reinforced thermoplastic (CFRTP). A hot-compaction roller was equipped with a fused filament fabrication (FFF)-based 3D printer to press the filament against the printer bed immediately after the printing to reduce voids and improve adhesion between the filaments. Unidirectional CFRTP coupon specimens were fabricated and the tensile and bending properties of the specimens were investigated. The test results showed that the tensile and bending properties of the printed CFRTP were improved by the hot compaction during 3D printing. Voids in the specimen were visualized using scanning electron microscopy and X-ray computed tomography, and it was confirmed that the hot compaction reduced the void content. The experimental results showed that 3DCP was superior to conventional FFF in the fabrication of CFRTP parts for structural applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据