4.7 Article

Transcriptional control of non-apoptotic developmental cell death in C-elegans

期刊

CELL DEATH AND DIFFERENTIATION
卷 23, 期 12, 页码 1985-1994

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2016.77

关键词

-

资金

  1. NIH Office of Research Infrastructure Programs [P40 OD010440]
  2. Rockefeller Women and Science Fellowship Program
  3. NIH [CA09673, HD078703, NS081490]
  4. National Institute of General Medical Sciences of the National Institutes of Health [T32GM07739]

向作者/读者索取更多资源

Programmed cell death is an essential aspect of animal development. Mutations in vertebrate genes that mediate apoptosis only mildly perturb development, suggesting that other cell death modes likely have important roles. Linker cell-type death (LCD) is a morphologically conserved cell death form operating during the development of Caenorhabditis elegans and vertebrates. We recently described a molecular network governing LCD in C. elegans, delineating a key role for the transcription factor heat-shock factor 1 (HSF-1). Although HSF-1 functions to protect cells from stress in many settings by inducing expression of protein folding chaperones, it promotes LCD by inducing expression of the conserved E2 ubiquitin-conjugating enzyme LET-70/UBE2D2, which is not induced by stress. Following whole-genome RNA interference and candidate gene screens, we identified and characterized four conserved regulators required for LCD. Here we show that two of these, NOB-1/Hox and EOR-1/PLZF, act upstream of HSF-1, in the context of Wnt signaling. A third protein, NHR-67/TLX/NR2E1, also functions upstream of HSF-1, and has a separate activity that prevents precocious expression of HSF-1 transcriptional targets. We demonstrate that the SET-16/mixed lineage leukemia 3/4 (MLL3/4) chromatin regulation complex functions at the same step or downstream of HSF-1 to control LET-70/UBE2D2 expression. Our results identify conserved proteins governing LCD, and demonstrate that transcriptional regulators influence this process at multiple levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据