4.6 Article

Evaluation of the CMIP6 planetary albedo climatology using satellite observations

期刊

CLIMATE DYNAMICS
卷 54, 期 11-12, 页码 5145-5161

出版社

SPRINGER
DOI: 10.1007/s00382-020-05277-4

关键词

Planetary albedo; CMIP6; Satellite observations

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA2006010301]
  2. Innovative Research Groups of the National Science Foundation of China [41521004]
  3. National Science Foundation of China [41575015]
  4. Fundamental Research Funds for the Central Universities [Lzujbky-2017-64]

向作者/读者索取更多资源

The Earth's planetary albedo (PA) has an essential impact on the global radiation budget. Based on 14 years of monthly data from the Clouds and the Earth's Radiant Energy System energy balanced and filled (CERES-EBAF) Ed4.1 dataset and atmosphere-only simulations of the Coupled Model Intercomparison Project Phase6 (CMIP6/AMIP), this study investigates the ability of CMIP6/AMIP model in reproducing the observed inter-month changes, annual cycle and trend of PA at near-global and regional scales. Statistical results indicate that some persistent biases in the previous models continue to exist in the CMIP6 models; however, some progresses have been made. In CMIP6/AMIP, large negative correlations for PA between the model ensemble mean and observation are addressed over the subtropical stratocumulus regions. In addition, the simulation of PA in drylands and tropical oceans remains a challenge in CMIP6 models. Over the most regions, PA biases are governed by cloud albedo forcing biases. These results demonstrate the importance of improving cloud process simulations for accurately representing the PA in models. For the annual cycles, the model ensemble mean captures the difference in amplitude between the two peak values of PA (June and December), as well as the phase of the seasonal cycle, despite PA is systematically overestimated. The differences between different terrestrial climatic regions are also examined. Results indicate that the relative biases of PA are greatest in semi-arid (2.2%) and semi-humid (2.8%) regions, whereas the minimum relative bias occurs in arid regions (0.3%) due to compensating errors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据