4.7 Article

Dynamic and reversible electrowetting with low voltage on the dimethicone infused carbon nanotube array in air

期刊

CHINESE CHEMICAL LETTERS
卷 31, 期 7, 页码 1914-1918

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2020.04.059

关键词

Carbon nanotube array; Electrowetting; Reversible; Dynamic; Low voltage

资金

  1. National Natural Science Foundation of China [51706191, 21673197, 21621091, 21975209]
  2. National Key R&D Program of China [2018YFA0209500]
  3. Fundamental Research Funds for the Central Universities [20720190037]
  4. Natural Science Foundation of Fujian Province of China [2018J06003]

向作者/读者索取更多资源

Unremitting efforts have been intensively making for pursuing the goal of the reversible transition of electrowetting owing to its vital importance to many practical applications, but which remains a major challenge for carbon nanotubes due to the irreversible electrochemical damage. Herein, we proposed a subtly method to prevent the CNT array from electrochemical damage by using liquid medium instead of air medium to form a liquid/liquid/solid triphase system. The dimethicone dynamically refills in CNT arrays after removing of voltage that makes the surface back to hydrophobic, which is an elegant way to not only decrease energy dissipation in electrowetting process but also obtain extra energy in reversible dewetting process. Repeated cycles of in situ experiments showed that more than four reversible electrowetting cycles could be achieved in air. It worth mention that the in situ reversible electrowetting voltage of the dimethicone infused CNT array has been lowered to 2 V from 7 V which is the electrowetting voltage for the pure CNT array. The surface of the dimethicone infused CNT array can maintain hydrophobicity with a contact angle of 145.6 degrees after four cycles, compared with 148.1 degrees of the initial state. Moreover, a novel perspective of theoretical simulations through the binding energy has been provided which proved that the charged CNTs preferred binding with water molecules thereby replacing the dimethicone molecules adsorbed on the CNTs, whereas reconnected with dimethicone after removing the charges. Our study provides distinct insight into dynamic reversible electrowetting on the nanostructured surface in air and supplies a way for precise control of wettability in surface chemistry, smart phase-change heat transfer enhancement, liquid lenses, microfluidics, and other chemical engineering applications. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据