4.7 Article

UV activation of the pi bond in pyridine for efficient pyridine degradation and mineralization by UV/H2O2 treatment

期刊

CHEMOSPHERE
卷 258, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127208

关键词

UV/H2O2; Excited pyridine; pi bond; Stable structure; Mineralization

资金

  1. National Natural Science Foundation of China [21906173]

向作者/读者索取更多资源

Pyridine and organics containing pyridine rings are widely used but persist in the environment and cause toxic pollution. Due to the attraction of the nitrogen atoms to the electrons in the pi bond, the pyridine ring is difficult to oxidize by oxidant. Here, we propose that ultraviolet (UV) irradiation activates the electrons in the pi bond and enables combination with the hydroxyl radical (center dot OH) originating from hydrogen peroxide (H2O2) to eliminate pyridine quickly and mineralize the byproducts. The removal rates of pyridine and total organic carbon (TOC) were compared in different treatments: UV irradiation, UV/H2O2 treatment and Fenton oxidation with different initial pyridine concentrations, pH values and H2O2 concentrations. The UV/H2O2 treatment yielded a higher pyridine removal rate and greater mineralization than the other treatments. The removal rate of pyridine was highest in neutral aqueous solution and H2O2 concentration of 10 mM. At an initial H2O2 concentration of 10 mM, more than 90% of the pyridine was degraded in 10 min, and approximately 70% of the TOC was removed in 60 min. The absorption of UV light at 254 nm by the pi bond of pyridine can accelerate the damage to the stable pyridine structure, especially in the presence of center dot OH. This study provides a promising alternative for the removal and mineralization of pyridine ring-containing materials. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据