4.7 Article Proceedings Paper

Microplastic quantification affected by structure and pore size of filters

期刊

CHEMOSPHERE
卷 257, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127198

关键词

Microplastic; Filter; Structure; Pore size; Quantification

资金

  1. Natural Science Foundation of China [41776123, 21802043]

向作者/读者索取更多资源

Filters of various structures (filter by pore depth or pore width) and pore sizes are used to extract microplastics (<5 mm) in researches. In present study, we demonstrate that filters with different structures and pore sizes can lead to different outcomes in microplastic filtering. Our results showed that when filtering large-sized microplastics, nylon filter (double-layer-hole type) retained nearly 100% of fibers, while polycarbonate filter (single-layer-hole type) only retained 61.7%. Polycarbonate filter retained the most fragments (80.8%), while cotton fiber filter (multilayer-hole type) retained the least (54.4%). Pellets were retained on different layers of nylon and cotton fiber filters, and could not be quantified accurately. Additionally, the sizes of some fibers and fragments captured were not within the expected ranges by lattice-knitting filters. Large fiber (3568.0 mu m) was not filtered out after 1000 mu m pore-size filtration. Small fragment (37.2 mu m) was found on 50 mu m pore-size filters. To validate laboratory results, filed waters containing microplastics (similar to 90% in form of fibers) were filtered through different pore-size filters. As expected, the relationship between abundance and pore size followed a same trend as that in laboratory fiber samples. Thereby, our results indicated that filter structure and pore size could affect the abundances of microplastics with different shapes. To obtain more accurate abundance of microplastics in a wide size range, and to consider filtration duration, size limitation of observation, and spatial resolution of identification instrument, we recommend that water samples should be filtered using 20 mu m pore-size filters with a double-layer-hole type of structure. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据