4.7 Article

Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals

期刊

CHEMOSPHERE
卷 244, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125490

关键词

Ferrate; Ultraviolet light; Oxidation; Superoxide radicals; Kinetics

资金

  1. National Natural Science Foundation of China [51978178, 51478172, 51521006]
  2. International SAMP
  3. T Cooperation Program of China [2015DFG92750]
  4. Department of Science and Technology of Guangdong Province of China [2018S0011]
  5. Department of Science and Technology of Hunan Province of China [2017112029, 2017SK2362]

向作者/读者索取更多资源

In this study, the performances and mechanisms of UV/ferrate(VI) oxidation were investigated comprehensively using 2,4-dichlorophenol (2,4-DCP) as a probe compound. UV/ferrate(VI) oxidation could efficiently degrade 2,4-DCP and its oxidation ability outperformed conventional UV-based advanced oxidation processes. Moreover, the degradation process of 2,4-DCP followed the pseudo-first order kinetics. In the absence of phosphate buffer, the rate constant of 2,4-DCP degradation increased from 9.4 x 10(-3) to 2.4 x 10(-2) min(-1) when pH value was increased from 3.0 to 6.0. However, the degradation was significantly inhibited by phosphate buffer at an identical pH due to the complexation of phosphate with the ferrate(VI) decay products. HCO3- appreciably accelerated the degradation of 2,4-DCP, while Cl- showed a negligible effect on the degradation. For the first time, combining with the results of chemical probe method, competitive kinetic experiment, electron spin resonance spectra and radical quenching studies, superoxide radicals were demonstrated as the dominant reactive species responsible for the degradation. On the basis of the intermediates detected by LC-MS/MS analysis, a pathway for 2,4-DCP degradation was proposed. This study provides a novel approach for contaminant removal using UV/ferrate(VI) oxidation and sheds new insights into the oxidation mechanisms. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据