4.7 Article

Removal mechanism of mitoxantrone by a green synthesized hybrid reduced graphene oxide @ iron nanoparticles

期刊

CHEMOSPHERE
卷 246, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125700

关键词

Green synthesized; rGO@Fe NPs; Mitoxantrone; Removal mechanism

资金

  1. Talent Construction Funds of Fujian Normal University, China [Z0210509]

向作者/读者索取更多资源

Anti-tumor drugs, due to their non-specific toxicity will cause long-term delayed toxicity to organisms and humans when discharged into the environment. In this study, reduced graphene oxide @ iron nanoparticles (rGO@Fe NPs) were successfully prepared using green tea extract as reductant and subsequently used for mitoxantrone (MTX) removal. SEM and Raman spectroscopy showed that 30-60 nm sized Fe NPs were loaded on rGO and green tea extract successfully reduced GO to rGO. The removal efficiency of MTX by the hybrid material was higher (98.5%) than either rGO (77.5%) or Fe NPs (53.1%) alone. In addition, the removal efficiency of MTX by the hybrid material was as high as 95% within 5 min, MTX adsorption followed both a pseudo-second-order kinetic model and the Langmuir isotherm, and it is a spontaneous adsorption. Recycling experiments showed that the removal efficiency of MTX decreased from 99.9 to 76.8% after six cycles, and could be as high as 99% in both municipal and medical wastewater. Scanning electron microscopy (SEM), Fourier transform infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and High performance liquid chromatography (HPLC) were all used to characterize and analyze the hybrid material, and possible adsorption mechanisms which revealed that MTX adsorption probably involved a combination of pi-pi stacking interaction, hydrogen bonding, electrostatic interaction and pore-filling. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据