4.7 Review

Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants

期刊

CHEMOSPHERE
卷 246, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125614

关键词

Cd toxicology; DNA damage response; DNA mismatch repair; Cell cycle arrest; Cd tolerance; Epigenetic regulation

资金

  1. National Natural Science Foundation of China (NSFC) [41807488, 41673132, 21677151, 41472237]

向作者/读者索取更多资源

Cadmium (Cd) is found widely in soil and is severely toxic for plants, causing oxidative damage in plant cells because of its heavy metal characteristics. The DNA damage response (DDR) is triggered in plants to cope with the Cd stress. The DNA mismatch repair (MMR) system known for its mismatch repair function determines DDR, as mispairs are easily generated by a translesional synthesis under Cd-induced genomic instability. Cd-induced mismatches are recognized by three heterodimeric complexes including MutS alpha (MSH2/MSH6), MutS beta (MSH2/MSH3), and MutS gamma (MSH2/MSH7). MutL alpha (MLH1/PMS1), PCNA/RFC, EXO1, DNA polymerase delta and DNA ligase participate in mismatch repair in turn. Meanwhile, ATR is preferentially activated by MSH2 to trigger DDR including the regulation of the cell cycle, endoreduplication, cell death, and recruitment of other DNA repair, which enhances plant tolerance to Cd. However, plants with deficient MutS will bypass MMR-mediated DDR and release the multiple-effect MLH1 from requisition of the MMR system, which leads to weak tolerance to Cd in plants. In this review, we systematically illustrate how the plant DNA MMR system works in a Cd-induced DDR, and how MMR genes regulate plant tolerance to Cd. Additionally, we also reviewed multiple epigenetic regulation systems acting on MMR genes under stress. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据