4.7 Article

Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions

期刊

CHEMOSPHERE
卷 245, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125628

关键词

9-Nitroanthrene; Microplastics; Adsorption; Environmental factors; Hydrophobic interaction

资金

  1. National Natural Science Foundation of China [41671493]
  2. Six Talent Peaks Project in Jiangsu Province, China [JNHB-059]
  3. State Key Laboratory of Pollution Control and Resource Reuse Foundation, China [PCRRF17030]

向作者/读者索取更多资源

Microplastics and Nitropolycyclic aromatic hydrocarbons (NPAHs) are two types of emerging pollutants that are strong potential threats to aquatic ecosystems and organisms. The adsorption of NPAHs on microplastics may explain the fate and effects of NPAHs in natural environments. In this study, the adsorption behavior of 9-Nitroanthrene (9-NAnt) on polyethylene (PE), polypropylene (PP) and polystyrene (PS) was investigated. Kinetic experiments revealed that 9-NAnt was inclined to be adsorbed onto microplastics, especially PE, which had a large adsorption amount of 734 mu g g(-1) . A linear isothermal model better described the isothermal adsorption process for 9-NAnt, which indicated that a hydrophobic distribution may be the main adsorption mechanism in an aqueous solution. Water environment factors, such as the pH and ionic strength, had negligible effects on the adsorption for PE. In contrast, alkaline and high ionic strength conditions resulted in the inhibition of adsorption of PP and PS. In addition, the particle size of microplastics was negatively correlated with the log K-d of 9-NAnt, and the performance of transient aging treatments on microplastics reduced their affinity for 9-NAnt, due to the addition of oxygen-containing functional groups. Above all, hydrophobic and electrostatic processes were the main adsorption mechanisms between microplastics and 9-NAnt (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据