4.7 Article

Detoxification and eco-friendly recycling of brick kiln coal ash using Eisenia fetida: A clean approach through vermitechnology

期刊

CHEMOSPHERE
卷 244, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125470

关键词

Brick industry coal ashes; Toxic metals; Vermiremediation; Eisenia fetida; Crop response

资金

  1. Ministry of Social Justice and Empowerment, Govt. Of India [RGNF-2012-13-SC-WES-34889]
  2. University Grants Commission (UGC) [RGNF-2012-13-SC-WES-34889]
  3. Indian Statistical Institute
  4. SERB-DST, India [EMR/2016/002609, PDF/2017/002639]
  5. CSIR, India [38(1445)/17/EMR-II]

向作者/读者索取更多资源

Brick kiln coal ashes (BKCAs) are one of the major toxic byproducts of the rapidly growing construction industry in developing countries. However, eco-friendly recycling avenues for BKCAs are yet to be explored. The major objectives of the present research were to evaluate the viability of vermitechnology in transforming BKCAs into valuable products, and to examine the metal detoxification potential of Eisenia fetida BKCA-based feedstocks. BKCAs were mixed in large scale with cow dung (CD) in 1:1 and 2:1 ratios, for vermicomposting and aerobic composting; performance was assessed in comparison with CD. Vermiconverted-BKCA was then used as organic fertilizer for rice grown in poorly fertile soil. Acidic nature of BKCA feedstocks was neutralized by 30-86% in the vermireactors. Total N and available P concentrations significantly increased in the vermireactors supplemented with considerable mineralization of total organic C. Exorbitantly high K and S contents were pacified to a normal range after vermicomposting. Greater improvement in microbial biomass, respiration, fungal and bacterial growth was observed under vermicomposting against aerobic composting. Consequently, urease and phosphatase activity increased by 1-4 folds in the BKCA based vermibeds. Bioavailability of toxic metals reduced by 41-74% in the vermicomposted BKCAs. High metal accumulation by the earthworms resulted in substantial reduction of pollution load in the finished product. The field experiment demonstrated that vermiconverted-BKCA could be utilized as potential organic fertilizer for rice production, soil fertility rejuvenation, and metal detoxification. Overall, the study reveals that E. fetida could be used as an efficient contender for sanitization of toxic BKCAs. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据