4.6 Article

Stabilizing DNAzymes through Encapsulation in a Metal-Organic Framework

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 26, 期 57, 页码 12931-12935

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202002178

关键词

continuous-flow conditions; DNAzymes; metal-organic frameworks; reactivation; stabilization

资金

  1. National Key Research and Development Program of China for International Science & Innovation Cooperation Major Project [2018YFE0113200]
  2. National Science Foundation of China [21722502]
  3. Shanghai Rising-Star Program [19QA1403000]
  4. Shanghai Science and Technology Committee (STCSM) [18490740500]

向作者/读者索取更多资源

DNAzymes are a promising class of bioinspired catalyst; however, their structural instability limits their potential. Herein, a method to stabilize DNAzymes by encapsulating them in a metal-organic framework (MOF) host is reported. This biomimetic mineralization process makes DNAzymes active under a wider range of conditions. The concept is demonstrated by encapsulating hemin-G-quadruplex (Hemin-G4) into zeolitic imidazolate framework-90 (ZIF-90), which indeed increases the DNAzyme's structural stability. The stabilized DNAzymes show activities in the presence of Exonuclease I, organic solvents, or high temperature. Owing to its elevated stability and heterogeneous nature, it is possible to perform catalysis under continuous-flow conditions, and the DNAzyme can be reactivated in situ by introducing K+. Moreover, it is found that the encapsulated DNAzyme maintains its high enantiomer selectivity, demonstrated by the sulfoxidation of thioanisole to (S)-methyl phenyl sulfoxide. This concept of stabilizing DNAzymes expands their potential application in chemical industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据