4.8 Article

Stability of Colloidal Iron Oxide Nanoparticles on Titania and Silica Support

期刊

CHEMISTRY OF MATERIALS
卷 32, 期 12, 页码 5226-5235

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.0c01352

关键词

-

资金

  1. European Research Council, EU FP7 ERC advanced grant [338846]
  2. Netherlands Organization for Scientific Research (NWO), Veni grant [722.015.010]

向作者/读者索取更多资源

Using model catalysts with well-defined particle sizes and morphologies to elucidate questions regarding catalytic activity and stability has gained more interest, particularly utilizing colloidally prepared metal(oxide) particles. Here, colloidally synthesized iron oxide nanoparticles (FexOy-NPs, size similar to 7 nm) on either a titania (FexOy/TiO2) or a silica (FexOy/SiO2) support were studied. These model catalyst systems showed excellent activity in the Fischer- Tropsch to olefin (FTO) reaction at high pressure. However, the FexOy/TiO2 catalyst deactivated more than the FexOy/SiO2 catalyst. After analyzing the used catalysts, it was evident that the FexOy-NP on titania had grown to 48 nm, while the FexOy-NIP on silica was still 7 nm in size. STEM-EDX revealed that the growth of FexOy/TiO2 originated mainly from the hydrogen reduction step and only to a limited extent from catalysis. Quantitative STEM-EDX measurements indicated that at a reduction temperature of 350 degrees C, 80% of the initial iron had dispersed over and into the titania as iron species below imaging resolution. The Fe/Ti surface atomic ratios from XPS measurements indicated that the iron particles first spread over the support after a reduction temperature of 300 degrees C followed by iron oxide particle growth at 350 degrees C. Mossbauer spectroscopy showed that 70% of iron was present as Fe2+, specifically as amorphous iron titanates (FeTiO3), after reduction at 350 degrees C. The growth of iron nanoparticles on titania is hypothesized as an Ostwald ripening process where Fe2+ species diffuse over and through the titania support. Presynthesized nanoparticles on SiO2 displayed structural stability, as only similar to 10% iron silicates were formed and particles kept the same size during in situ reduction, carburization, and FTO catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据