4.8 Article

Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics

期刊

CHEMISTRY OF MATERIALS
卷 32, 期 10, 页码 4144-4151

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b04830

关键词

-

资金

  1. Toyota Research Institute (TRI)

向作者/读者索取更多资源

Solid polymer electrolytes (SPEs) are considered promising building blocks of next-generation lithium-ion batteries due to their advantages in safety, cost, and flexibility. However, current SPEs suffer from a low ionic conductivity, motivating the development of novel highly conductive SPE materials. Here we propose a new SPE design approach that integrates coarse-grained molecular dynamics (CGMD) with machine learning. A continuous high-dimensional design space, composed of physically interpretable universal descriptors, was constructed by the coarse graining of chemical species. A Bayesian optimization (BO) algorithm was then employed to efficiently explore this space via autonomous CGMD simulations. Adopting this CGMD-BO approach, we obtained comprehensive descriptions of the relationships between the lithium conductivity and intrinsic material properties at the molecular level, such as the molecule size and nonbonding interaction strength, to provide guidance on directions to improve upon the components of the best-known electrolytes, including anion, secondary site, and backbone chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据