4.7 Article

Thickness-dependent carrier separation in Bi2Fe4O9 nanoplates with enhanced photocatalytic water oxidation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 385, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123929

关键词

Bi2Fe4O9; Nanoplates; Controllable thickness; SDBS; Photocatalytic O-2 evolution

资金

  1. National Natural Science Foundation of China [21671173]
  2. Zhejiang Provincial Ten Thousand Talent Program [2017R52043]
  3. Zhejiang Provincial Natural Science Foundation of China [LQ18E010004]

向作者/读者索取更多资源

Herein, Bi2Fe4O9 nanoplates (BFO NPs) with controllable thickness are successfully synthesized via a facile hydrothermal method with varied content of sodium dodecyl benzene sulfonate (SDBS). The thickness along the [001] direction of the BFO NPs can be controlled by varying the SDBS content, and the decreased thickness plays multiple roles in improving the photocatalytic water oxidation performance: (1) increasing the distortion and asymmetries of the FeO4 tetrahedral and FeO6 octahedral units, and enhancing the built-in electric field in the BFO NPs accordingly, to facilitate the efficient separation of photogenerated electron-hole pairs; (2) reducing the migration distance of holes to the surface of the both oxygen- and bismuth-enriched {001} facets; (3) promoting the exposure of {001} facets of the BFO NPs which facilitates hole accumulation and provides more active sites to accelerate surface oxidation reaction. As a result, the as-prepared BFO-2 sample with optimized thickness exhibits the best photocatalytic water oxidation performance under visible-light irradiation, achieving the O-2 evolution rate of 461.08 mu mol g(-1) h(-1), about 7.87 times higher than BFO NPs prepared without using SDBS. The built-in electric field for BFO and its role in photocatalytic water oxidation process are reported for the first time. This work provides new insights into improving intrinsic activity of individual semiconductor photocatalyst by morphology and structure modulation and charge behavior regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据