4.7 Article

Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode

期刊

CHEMICAL ENGINEERING JOURNAL
卷 399, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.125088

关键词

Photoelectrocatalysis; Peroxymonosulfate; MnFe2O4; Bisphenol A

资金

  1. National Key Research and Development Program of China [2016YFC0401405]
  2. National Natural Science Foundation of China [21777176, 51578532, 21806112]

向作者/读者索取更多资源

The combination of photoelectrocatalytic (PEC) and sulfate radical (SO4 center dot-)-based advanced oxidation technology (SR-AOP) has been regarded as a promising technology for efficient removal of pollutants by in-situ generated reactive radicals in the field of environmental remediation. Herein, a novel PEC/SR-AOP system was constructed by employing a BiVO4 as photoanode and a MnFe2O4 modified carbon fiber paper (MnFe2O4/CFP) as cathode. The introduction of MnFe2O4 greatly promotes the peroxymonosulfate (PMS) activation of CFP cathode, and the PEC process accelerates the PMS activation of MnFe2O4 for the high-active SO4 center dot- production. As a result, the BiVO4-MnFe2O4/CFP system exhibited remarkably enhanced photoelectrocatalytic performances toward Bisphenol A (BPA) degradation. Nearly 100% of BPA can be degraded after 90 min irradiation under the optimal condition of 1.0 V applied bias and 1 mM PMS addition. The apparent rate constant of BPA degradation over the BiVO4-MnFe2O4/CFP PEC/PMS system is achieved to 0.0596 min(-1). Radical scavenger experiments and electron spin resonance confirmed that the generated center dot OH and SO4 center dot- showed the responsible for BPA degradation during PEC reaction. The results of XPS and LSV tests indicated the favorable redox reaction between MnFe2O4/CFP and PMS, which results in the generation of high active SO4 center dot-. This work provided a promising way to synthesize other novel PEC systems with excellent photoelectrocatalytic performance for environmental pollutants removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据