4.8 Article

Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape

期刊

CELL
卷 165, 期 5, 页码 1280-1292

出版社

CELL PRESS
DOI: 10.1016/j.cell.2016.04.038

关键词

-

资金

  1. NSF [IOS-0820729/IOS-1114484, MCB1024999]
  2. Gordon and Betty Moore Foundation [GBMF3034]
  3. Division Of Integrative Organismal Systems
  4. Direct For Biological Sciences [1114484] Funding Source: National Science Foundation
  5. Div Of Molecular and Cellular Bioscience
  6. Direct For Biological Sciences [1024999] Funding Source: National Science Foundation

向作者/读者索取更多资源

The cistrome is the complete set of transcription factor (TF) binding sites (cis-elements) in an organism, while an epicistrome incorporates tissue-specific DNA chemical modifications and TF-specific chemical sensitivities into these binding profiles. Robust methods to construct comprehensive cistrome and epicistrome maps are critical for elucidating complex transcriptional networks that underlie growth, behavior, and disease. Here, we describe DNA affinity purification sequencing (DAP-seq), a high-throughput TF binding site discovery method that interrogates genomic DNA with in-vitro-expressed TFs. Using DAP-seq, we defined the Arabidopsis cistrome by resolving motifs and peaks for 529 TFs. Because genomic DNA used in DAP-seq retains 5-methylcytosines, we determined that >75% (248/327) of Arabidopsis TFs surveyed were methylation sensitive, a property that strongly impacts the epicistrome landscape. DAP-seq datasets also yielded insight into the biology and binding site architecture of numerous TFs, demonstrating the value of DAP-seq for cost-effective cistromic and epicistromic annotation in any organism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据