4.7 Article

Commercial and recycled carbon/steel fibers for fiber-reinforced cement mortars with high electrical conductivity

期刊

CEMENT & CONCRETE COMPOSITES
卷 109, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2020.103569

关键词

Recycling; Conductive mortar; Carbon fibers; Steel fibers; Multifunctional concrete; Self sensing concrete

向作者/读者索取更多资源

The paper aims to provide a comprehensive study on the compositional optimization of high-conductive multifunctional fiber-reinforced cement mortars (FRCMs). Therefore, the effects of three different fiber types: virgin carbon fibers (VCFs), recycled carbon fibers (RCFs), and brass-plated steel fibers (BSFs), added at a broad range of concentrations, as 0.05%, 0.1%, 0.2%, 0.4%, 0.8%, 1.2%, and 1.6% by volume, on the mechanical, electrical and durability properties of FRCMs have been compared. The results showed that RCFs increase the flexural and tensile splitting strength up to 100%, whereas BSFs improve the compressive strength by 38%. Moreover, the fibers decrease both the capillary water absorption and the drying shrinkage by 39%. Electrical conductivity tests show that RCFs decrease the electrical resistivity of mortars up to one order of magnitude, in addition to a percolation threshold between 0.1 and 0.2 vol%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据