4.8 Article

Shear-induced diamondization of multilayer graphene structures: A computational study

期刊

CARBON
卷 167, 期 -, 页码 140-147

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2020.05.038

关键词

-

资金

  1. DoE-ARPA-E OPEN
  2. NASA-EPSCoR, Louisiana [EPSCoR-OIA-1541079, NSF(2018)-CIMMSeed-18, NSF-(2018)-CIMM-Seed-19]
  3. LEQSF(2015-18)-LaSPACE
  4. Louisiana Tech University
  5. National Science Foundation 2D Crystal Consortium e Material Innovation Platform (2DCC-MIP) under NSF [DMR-1539916]
  6. NSF-CAREER under NSF [CBET-1943857]
  7. NSF [CMMI-1943710, MMN-1904830]
  8. ARO [W911NF-17-1-0225]
  9. ONR [N00014-16-1-2079]

向作者/读者索取更多资源

Diamond is the hardest superhard material with excellent optoelectronic, thermomechanical, and electronic properties. Here, we have investigated the possibility of a new synthesis technique for diamane and diamond thin films from multilayer graphene at pressures far below the graphite -> diamond transformation pressure. We have used the Molecular Dynamics technique with reactive force fields. Our results demonstrate a significant reduction (by a factor of two) in the multilayer graphene -> diamond transformation stress upon using a combined shear and axial compression. The shear deformation in the multilayer graphene lowers the phase transformation energy barrier and plays the role of thermal fluctuations, which itself promotes the formation of diamond. We revealed a relatively weak temperature dependence of the transformation strain and stresses. The transformation stress vs. strain curve for the bulk graphite drops exponentially for finite temperatures. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据